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Abstract—Robots are given more and more challenging tasks
in domains such as transport and delivery, farming or health.
Software is key components for robots, and ROS is a popular
open-source middleware for writing robotics applications. Code
quality matters a lot because a poorly written software is much
more likely to contain bugs and will be harder to maintain over
time. Within a code base, finding faulty patterns takes a lot
of time and money. We propose a framework to search auto-
matically user-provided faulty code patterns. This framework is
based on FO++, a temporal extension of first-order logic, and
Pangolin, a verification engine for C++ programs. We formalized
with FO++ five faulty patterns related to ROS and embedded
systems. We analyzed with Pangolin 25 ROS packages looking
for occurrences of these patterns and found several of them. To
prevent the faulty patterns from arising in new ROS packages,
we propose a design pattern, and we show how Pangolin can be
used to enforce it.

I. INTRODUCTION

Robotics is a growing field, and in future time, robots are ex-
pected to deploy in open and unconstrained environments with
human presence. Traditionally, robots were confined within
controlled environments which ensured safety. However, in a
public environment with human interaction, safety is all the
more important to protect people and maintain public trust.

Robot Operating System (ROS) [1] is a popular open-source
middleware for robotics. It provides tools and abstractions to
ease the creation of a robotic application and has bindings
for several programming languages (C++, Lisp and Python).
A typical ROS application consists of several basic processing
units (called nodes) deployed in a certain manner and exchang-
ing data through ROS. There are many existing components
from various sources (the official website lists more than 1600
packages for ROS Indigo, the latest LTS release).

ROS is widely used in an academic context and spreads
in the industry with initiatives like ROS-Industrial [2]. ROS-
Industrial aims for extending ROS to provide solutions needed
by the industry (such as interoperability with standard hard-
ware, or ready to use industrial applications). ROS others
drawbacks for industrial applications are the lack of real-time
control and the lack of insurance on the code quality. Code
quality matters a lot because a poorly written software is much
more likely to contain bugs and will be harder to maintain over
time [3]. This is all the more critical as robots often have a
long service life.

Our goal is to find patterns in robotics software that do
not respect good programming practices. Fixing these patterns

(which are not necessarily bugs) will improve code quality.
Finding such faulty patterns can be done manually by peer-
review, but this is time and money consuming as it requires
to divert one (or several) programmers from their current task
to perform the review. Instead, we propose an approach in
which (1) each pattern is specified in a formal language, having
thus an unambiguous meaning, and (2) the detection of the
pattern within the code relies on a formal technique (model
checking) which is fully automatic and provides an exhaustive
exploration of the code.

The specification language for patterns, which we call
FO++, addresses two concerns: it allows reasoning over the
structure of the source code (classes, functions, inheritance
relationship ...) and over properties related to the execution
paths within the control flow graph (CFG) of functions (such
as a constraint on the ordering of statements). We define
this language as an extension of first-order logic with tem-
poral logic. Indeed, first-order logic is suited to reasoning
over structural aspects and temporal logic allows expressing
properties related to the ordering of events. Our framework
also includes the (automatic) detection engine for C++ code,
Pangolin, which takes a pattern specification in FO++ and
the target C++ code as inputs.

The contributions of this paper are as follows:

• We present a framework to detect patterns in source code,
which includes a formal specification language, FO++,
and Pangolin, an engine based on model checking,
which detects automatically the occurrences of patterns
in source code.

• We study five suspicious code patterns that reduce code
quality and apply Pangolin to detect occurrences of these
patterns in 25 common ROS packages.

• We propose a design pattern for the development of new
ROS packages, which prevents the problems that come
with the previously identified patterns and show how to
enforce this design pattern using FO++ and Pangolin.

The rest of the article is organized as follows. In section II,
we develop on code quality in robotics. In section III, we
present Pangolin and FO++. In section IV, we study five sus-
picious patterns and apply Pangolin to detect their occurrences.
In section V, we propose a design pattern for the development
of new ROS packages and show how to enforce it using FO++

and Pangolin.



II. ROBOTICS AND CODE QUALITY

A. ROS overview

ROS is a popular open-source framework providing a collec-
tion of tools to ease the development of robots, including: a set
of language and platform-independent tools used for building
and distributing ROS-based software; capabilities with many
state-of-the-art algorithms ready to be integrated; library im-
plementation for C++, Python, and Lisp for developing new
features; a worldwide community.

A package is the smallest unit of development and release
for ROS related projects. It usually provides either access
to some physical devices (such as LIDAR or IMU) or the
implementation of standard algorithms for robots (navigation,
guidance, control, localization,. . . ). A typical ROS application
consists of nodes (processes executing different tasks) con-
nected through a software bus provided by ROS. The nodes
use a publish-subscribe architecture to exchange data. This
design is flexible, promotes code reuse and simplifies complex
programming.

B. Code quality on critical systems

On critical systems, safety is of the utmost importance given
that lives and public trust are at stake. Thus, it is important
to ensure that the code embedded in these systems is correct
with respect to a specification. Two different aspects can be
checked for correctness: its semantics (what it does) or its
”style” (how it is designed and written).

There are several ways to ensure that a piece of code
computes the right result. Tests are commonly used to find
errors and help to gain confidence in the code correctness.
The code can be correct-by-construction if it is generated from
models by tools that are both proven correct [4]. Finally, the
code could be proven to be correct, with the help of some
static analysis tools. These tools rely on methods such as
abstract interpretation or deductive-methods based on Hoare
logic. For instance, Frama-C with Jessie [5] is a well-known
tool to verify properties in a deductive manner on a C program.

However, correctness is often not enough for software. It has
to be understandable, readable and easy to update: it should
be well-written, and one should also have confidence in it.
This translates into software metrics, but also into idioms of
the language to follow, domain-specific constraints, project
guidelines and coding rules. For C++, see MISRA C++ [6],
JSF++ [7] or HIC++ [8]. They often focus on banning or
restricting C++ constructs to produce a safer subset of C++
and are widely enforced in embedded systems. The goal of
enforcing them is to improve the safety and reliability of
such systems. Many static analysis tools (such as Coverity
or Klocwork) can do it.

.QL [9] proposes to see the code as data. It enables to run
queries over a special database which contains a representation
of the program, which was built using a language-specific ex-
tractor. .QL is underpinned by an untyped variant of Datalog,
and unlike FO++, it cannot express temporal properties over
the CFG of a function.

CppDepend is another code exploration software. It allows
to analyze the code structure and specify design rules to
compute technical debt estimations and find code smells. It
provides CQLinq (Code query over Linq [10]) to write custom
queries. Again, unlike FO++, it cannot express temporal
properties over the CFG of a function. Besides, it does not
come with a formal semantics.

Coccinelle [11] performs advanced program matching on C-
code. It is underpinned by CTL-VW, a variant of Computation
Tree Logic (a temporal logic) with the ability to use quantified
variables over the set of expressions within a function and
record their values. Its user specification language (SPatch)
is close to the one used by the diff utility and translated into
CTL-VW formula. It was successfully applied on several open
sources projects such as the Linux kernel [12] and allows
not only detecting patterns but also transforming the source
code. Unlike Coccinelle, Pangolin targets C++ programs, and
because of the object-oriented paradigm of C++, reasons about
the structural aspects of the code. It also offers CTL and LTL,
while Cocinelle only supports CTL-VW.

C. ROS code quality

The need for asserting the quality of ROS packages has been
recently acknowledged. In [13], the authors propose HAROS,
a framework assessing the quality of ROS packages. The goal
of this framework is to ease the computation of metrics and
conformance to coding standards by leveraging ROS unique
features.

Moreover, enforcing methods from embedded systems on
ROS packages will undoubtedly improve code quality. How-
ever, this will only fix issues that are related to C++ and
that could be found in other fields (for instance, using invalid
pointers). ROS has some distinctive features, and thus ROS
packages should also follow some specific design rules and
patterns. Currently, the ROS community has issued a coding
guide [14] based on Google’s C++ Style Guide and set of
code metrics [15]. The coding guide mostly provides stylis-
tic guidelines regarding naming conventions and some basic
informal rules regarding code design. roslint [16] is a linter
integrated within ROS, which can perform some checks.

D. Motivation

As a motivation example, we consider the use of free
functions as callbacks in ROS applications. A typical ROS
application is made of nodes which use a publish-subscribe
mechanism to exchange data. ROS delivers the messages to
the nodes with callbacks. They are functions not meant to
be called directly by the developer, therefore, they should be
hidden as much as possible.

Technically, within a C++ ROS program, a callback is
a function that appears as the third argument of a call to
subscribe on a NodeHandle variable. ROS allows both
free functions and member functions to be used as callbacks.
A free function can never be totally hidden. At best, it can
be static or within an anonymous namespace, which prevents
the developer from calling it from another file. Nevertheless,



it does not prevent the developer from calling it in the current
file. Moreover, a free function often couples the reception of
the data with the algorithm that treats them, hindering code
reusability. Thus, we want to ensure that all callbacks are
private member functions.

Specifying a pattern that corresponds to the satisfaction
(or the violation) of this rule requires reasoning about all
functions, specifying that a function is member of a class,
that it is private, that the third argument of a certain call is of
type NodeHandle, etc. This is what we call the structural
aspects of a pattern. Besides, if we consider for instance the
violation of the rule, we also need to express that in the CFG
of a certain function, there is an execution path in which at
some point, there is a call to a function on a variable of
type NodeHandle, and such that the third argument is not
a private member function. Existing methods do not address
well this type of analysis which combines structural aspects
and properties related to execution paths within a CFG.

In this paper, we propose a framework to address this issue.
It relies on FO++, a temporal extension of first-order logic,
and comes with Pangolin, a prototype which implements the
detection of patterns through a model checking algorithm for
FO++ formula.

III. PANGOLIN

A. Overview

Pangolin1 is a verification engine for C++ programs. The
user provides a FO++ specification (corresponding to the
code pattern), the source code to analyze and Pangolin checks
the code compliance with respect to the specification. Fig. 1
illustrates the whole process.

Fig. 1. Pangolin overview

Pangolin parses the C++ code source with Clang and its API
libtooling [17]. Pangolin evaluates the formulas by rewriting
them until it reaches true or false. It prints the result with
a complete trace of the evaluation process which can be
reviewed. It deals internally with most of the first order logic.
It performs first-order quantifiers elimination, and evaluate

1Pangolin is available at https://gitlab.com/Davidbrcz/Pangolin

structural predicates and functions. For evaluating temporal
predicates, it uses the model-checker nuXmv [18] by reducing
the evaluation of such predicates to a model checking problem.

Clang provides an up-to-date and complete support for C++
and direct access to the code abstract syntax tree (AST). If
Clang is also used for compilation, it strengthens the analysis
as the choices made about unspecified elements within the C++
standard will be the same for Pangolin and the actual execution
of the program. Using Clang implies that Pangolin relies on
Clang building process2, meaning it can only analyze one file
at a time. As Clang expects the code to compile, Pangolin
cannot analyze a piece of code if it does not compile or a
simple snippet of code taken out of its context.

In the following sub-sections, the complete construction
of FO++ is detailed. Section III-B2 defines FO++ syntax
and then section III-B3 defines its semantics. Since FO++ is
a temporal extension of first-order logic, most of its syntax
and semantics is identical to the one of first-order logic. The
extension is done through parametrisation. It consists in adding
two temporal predicates to the atoms of first-order logic. The
semantics of these two temporal predicates follows the usual
semantics of temporal logics. The details of the temporal part
of FO++ are in section III-C. Finally, section III-D shows
how FO++ is instantiated for C++ so that it can be used as
a specification language for Pangolin.

B. Specification formalism: FO++

1) Overview: FO++ is a new logic defined as a tem-
poral extension of first-order logic through a process called
parametrization [19]. It has a well-defined semantics and is
not tied to any programming language in its generic form.
Once instantiated for a specific programming language, we
use it as a specification formalism to describe faulty patterns.
The first-order part of the logic is used to express structural
properties.

In FO++, temporal logics are used to describe a sequence
of events within the CFG of a function. Traditionally, temporal
logic formulas use temporal operators that allow describing
sequences of events over time. In FO++, an event represents
a statement that can be found in the CFG of a function.
Moreover, they are not sequenced with respect to time but
with respect to the order in which the statements occur within
the CFG.

The first-order logic is parameterized with temporal log-
ics through two special first-order predicates modelsCTL and
modelsLTL. Intuitively, if f is a first-order variable and ϕ is
an LTL formula (resp. a CTL formula) then modelsLTL(f, ϕ)
(resp. modelsCTL(f, ϕ)) is true if f denotes a function and if
the Control Flow Graph of f satisfies the formula ϕ according
to LTL (resp. CTL) semantics rules.

2) Syntax:
a) Terms: Let V be a finite set of variables, and F++ a

set of function symbols, each having its own arity.
We define inductively the set T++ of FO++ terms as

follows:
2which is the standard C++ build process



• if x is a variable then x is a term in T++

• if f ∈ F++ has arity n and for each i ∈ 1..n, ti ∈ T++

then f(t1, . . . , tn) is a term in T++

b) Atoms: An atom consists of a call to a predicate (a
predicate symbol together with a list of terms that is consistent
with the profile of the predicate). The set ATOMS++ of FO++

atoms is built from the set of predicate symbols, which consists
of:

• a set P++ of predicate symbols (each having its own
arity);

• two special binary predicate symbols: modelsLTL and
modelsCTL. The first argument of both predicates is a
term in T++. The second argument of modelsLTL (resp.
modelsCTL) is an LTL (resp. CTL) formula as defined in
section III-C.

c) Formulas: FO++ formulas are defined as follows:

• >,⊥ are formulas;
• if a ∈ ATOMS++ then a is also a formula;
• if Q is a formula, then ¬Q,Q ∨ Q,Q ∧
Q,∀x Q,∃x Q,Q⇔ Q,Q =⇒ Q are also formulas.

A valid FO++ formula is a formula without free-variable.
3) Semantics:

a) Interpretation structure: An FO++ formula is inter-
preted over a structure M = (D,CFGS, has cfg, cfg, I, P ),
where

• D is a domain in which terms are interpreted.
• CFGS is a set of transition systems (as defined in

section III-C2) that represent the dynamic behaviors, i.e.,
in the context of program analysis, the CFG of some
elements in the domain (functions or methods). They are
used to interpret temporal formulas;

• has cfg : D → {true, false} is a total function to indicate
whether a value in the domain is associated with a
dynamic behavior, i.e., a CFG;

• cfg : D → CFGS is a partial function, which maps some
values in the domain to a CFG;

• I : F++ → (Dn → D) defines an interpretation for
functions in F++;

• P : P++ → (Dn → {true, false}) defines an interpreta-
tion for predicates in P++.

Notice that a structure M has to satisfy the following con-
straint: for every element d ∈ D, has cfg(d) if and only if
d is in the domain of cfg. F++ and P++ are specific to the
programming language used for the project under analysis, and
D and CFGS are even specific to the program itself.

b) Environment: An environment is a partial function
from the set V of variables to the domain D. If σ is an
environment, x a variable in V and d a value in D, then
σ[x ← d] denotes the environment σ1 where σ1(x) = d and
for every x 6= y, σ1(y) = σ(y).

From an environment σ and an interpretation I for func-
tions, we define an interpretation Kσ : T++ → D for terms

in the following way:{
for each variable x in V,Kσ(x) = σ(x)

Kσ(f(t1, . . . , tn)) = I(f)(Kσ(t1), . . . ,Kσ(tn))

c) Satisfaction rules: Let M be a model, σ an environ-
ment and Kσ an interpretation according to this environment.
We define the satisfaction relation of FO++ as follows3:

M,Kσ |= ¬Q iff M,Kσ 6|= Q

M,Kσ |= Q1 ∧Q2 iff M,Kσ |= Q1 and M,Kσ |= Q2

M,Kσ |= ∃x Q iff
there is an a ∈ D such that M,Kσ[x←a] |= Q

M,Kσ |= p(t1, . . . , t1) iff P (p)(Kσ(t1), . . . ,Kσ(tn)) = true
M,Kσ |= modelsCTL(x, ψ) iff

M,Kσ |= has cfg(x) and cfg(x),Kσ |=CTL ψ
M,Kσ |= modelsLTL(x, ψ) iff

M,Kσ |= has cfg(x) and cfg(x),Kσ |=LTL ψ

C. Temporal formulas

Temporal logics are formalisms to describe the flow of
time and how events are ordered. Two temporal logics are
available within FO++: Computation-Tree Logic (CTL) et
Linear Temporal Logic (LTL).

LTL allows reasoning about a single discrete timeline, and
offers operators neXt, Finally, Globally and Until to talk
about future events. LTL also offers past operators Yesterday
(X dual), Once (F dual), Historicaly (G dual), and Since
(U dual). CTL is a discrete branching-time logic (at each
moment, all paths from the current state are considered).
CTL provides path quantification over LTL future operators.
For ◦ ∈ {X,F ,G }, A ◦ φ is true if ◦φ is true on all paths
starting from the current state, whereas E ◦ φ is true if ◦φ
is true on at least one path. The same reasoning applies for
A[φ U ψ], E[φ U ψ], and φ U ψ. For a complete CTL and
LTL description, see for instance [20].

Within FO++, a temporal formula is evaluated over a
function CFG. Thus, events are sequenced with respect to the
order in which the statements occur within the CFG.

Both are included because they are well-established logics,
and tackle different issues: CTL is more natural over a CFG
as it is branching-time whereas LTL offers a path-sensitive
analysis and the ability to refer to the past of an event.

1) Syntax: The second parameter of the temporal predicates
modelsLTL and modelsCTL is a temporal logic formula (in
LTL or CTL). Unlike classical temporal logic, atoms of these
temporal logic formulas are not taken among a set of atomic
propositions. Instead, they consist of calls to predicates from
a set PREDCFG, disjoint from P++. PREDCFG is a set of
user-provided predicates which describe a fragment of AST
that can be found within a function. The parameters (if any)
of these predicates are terms in T++, built from variables that

3due to space constraints, we only provide the semantics of a minimal set
of logical connective, which are sufficient to define the others (disjunction,
implication, universal quantification, . . . )



are quantified outside the temporal predicates (we do not allow
quantification in temporal formulas).

2) Semantics:
a) CFG formal definition : Let B = (S,→, I

CFG
, J K)

be a CFG. S is a set of states, →⊆ S × S is the transition
relation between states (written ◦ → ◦), I

CFG
⊆ S is the set of

initial states and J K : PREDCFG × S → P (Dn) associates a
predicate p of arity n with its valuation in a state s, denoted
JpKs (i.e., the list of all tuples of concrete values for which
the predicate is true).

b) Interpretation rules for temporal formulas: The satis-
faction of LTL and CTL formulas are defined in the standard
way. For the precise rules, refer for instance to [20]. In our
context, the only particular satisfaction rule is for the atoms of
temporal logic formulas, relying on predicates in PREDCFG.
Given an environment σ, an interpretation Kσ , a predicate
p ∈ PREDCFG, a state s and some terms v1, . . . , vn, the
satisfaction relation for atoms is defined as follows 4:

s,Kσ |= p(v1, . . . , vn) iff (Kσ(v1), . . . ,Kσ(vn)) ∈ JpKs

D. FO++ instantiation for C++

FO++ construction does not mention any particular pro-
gramming language and can not be used as it is to formalize
some properties. FO++ needs to be instantiated for a specific
programming language to be concretely used as a specification
language. As the rules aim to improve the architecture of C++
ROS package, FO++ will be specified for C++. This process
requires to instantiate the set of functions and predicates and
to give them a semantics. We also have to specify precisely
the concrete domain over which the formula is evaluated.

1) Domain of discourse: The domain of discourse contains
the values over which FO++ formulas are interpreted. It
is unique to each file under analysis. For a given C++
program, it contains all classes (including template ones), their
attributes, member functions, constructors and destructor, all
free functions, all global variables, all function arguments, and
all defined types.

2) Predicates and functions: Non-temporal predicates deal
with the most fundamental structural properties. In C++,
structural properties are nature inquiry (is it a class, an
attribute,. . . ), parenthood relationship between elements, vis-
ibility, inheritance relationship, types and their qualification.
For conciseness, the full list of functions and predicates is not
shown here.

The meaning of FO++ functions and predicates corre-
sponds to the one described in the C++ standard [21]. Table I
lists some functions and predicates needed to formally express
some properties in the subsequent sections and describes an
informal semantics for them.

IV. MEASURING ROS PACKAGES CONFORMANCE TO
CODING RULES

In this section, we define a set of 5 coding rules that are
relevant to increase the code quality within ROS packages. We

4it applies to both |=LTL and |=CTL and is thus simply denoted with |=

Predicate Informal semantics
isClass(c) true iff c refers to struct, class or union

isAttribute(c) true iff c refers to a class/struc/union field
parent(c, p) true iff p if the father of c
isPrivate(f) true iff f is private within the class

TABLE I
SMALL SUBSET OF STRUCTURAL PREDICATES IN THE FO++

INSTANTIATION FOR C++

then formalize with FO++ code patterns corresponding to the
violation of the rules. Finally, we analyze 25 ROS packages
with Pangolin to see if there are any occurrences of these
patterns.

A. Suspicious patterns
This section shows five code patterns that can be consid-

ered bad practices for robotics systems. The first three are
generic (they apply to any C++ projects on embedded systems)
whereas the last two are specific to ROS. These patterns are
not strictly speaking bugs but they do not convey confidence
in the code. They must be at least detected, at best be fixed.

We focus on these patterns to exhibit Pangolin abilities and
do not try to check the compliance of the packages with a
more generic set of rules such as MISRA C++ or JSF++.

1) Generic patterns: The generic patterns address the use
of global variables, variables with a scope too wide, and the
use of inadequate logging mechanisms.

- R1: All user-provided global variables must be constant
Global variables make the code harder to read and reason
about for the programmer. Developers have to track the
use of each variable across many lines of code to know
what the code does. This is why many guidelines either
reject or strictly supervise the use of global variables;

- R2: There should be no local non-constant variable
passed to a function and never used again Variable with
a scope too wide hinder code readability and can be
misused in future code evolution. This is particularly
visible for variables created in one scope, passed to an
object or a function and never used again in the original
scope. This is especially true for ROS NodeHandle as
they are entry points for ROS functionality, their scope
should be narrowed as much as possible. In listing 1
variables p and pnh should be attributes of that class
rather than passed as arguments. Even if it is not a bug,
it represents a defect in the design;

- R3: There should be not call to std::cout<<,
std::cerr<< in any function. No std::ofstream vari-
ables should be created. On embedded systems, accessing
resources usually follows some strict constraints in order
to have guarantees on execution time and scheduling. For
inputs and outputs, should not directly write on standard
output and error or open custom files, all the more there
is usually a dedicated mechanism for logging.

2) ROS specific patterns: For ROS specific patterns, we
focus on the correct use of publishers and on callbacks.

- Each ROS publisher should be advertised and being
published on



int main(int argc, char **argv){
ros::init(argc, argv, "

depthimage_to_laserscan");
ros::NodeHandle n;
ros::NodeHandle pnh("˜");
depthimage_to_laserscan::

DepthImageToLaserScanROS dtl(n, pnh);
ros::spin();

}

Listing 1. main from depthimage to laserscan ROS package

a) R4a: If the publisher is local to a function, then there
is a call to publish within that function

b) R4b: If the publisher is an attribute, then there is a
member function in which there is a call to publish on
it.

- R5: all callbacks are private member functions. The
motivation for the rule was exposed in section II-D.

B. Pattern formalization

In this section, we show how to formally express the
rules described previously. However, for conciseness, we only
formalize the rule R5. We are looking for pieces of code that
do not respect the rule, thus we will formally describe a code
pattern that is the negation of the rule. The pattern is formally
expressed with the following formula:

∃m(isFreeFunction(m)

∧ ∃n(locallyDeclared(n,m) ∧ hasType(n,NodeHandle)
∧ ∃c(allFunctions(c) ∧modelsCTL(m,EFsub(n, c))

∧ ¬isPrivate(c)))) (1)

The first part of the formula consists of finding a free
function m , and then a local variable n whose type is
NodeHandle. Then, the rest of the formula looks for a
function c (that could be a free or member) and checks if it is
not private. Notice that, as a free function cannot be private, the
predicate isPrivate will be false if c denotes such a function.
Finally, modelsCTL will be true if sub(n, c) becomes finally
true on, at least, one execution path in the CFG of m . sub is an
element of PREDCFG such as sub(n, c) is true on states where
there is a call of the following shape n.subscribe( , , c) (c
is used as the third argument of a call to subscribe on n).

C. Experiments

1) Corpus: We used Pangolin to find violations of the
previous rules in 25 ROS packages containing a total of 172
C++ files. We chose these packages because they are well-
known components and are likely to be used off the shelf.
Thus, it is important to make sure their code does not contain
suspicious code patterns.

The packages are sorted in three main groups:
• Navigation: all packages from ROS Navigation, ex-

tended with teb local planner and ros dso (ROS Wrap-
per around Direct Sparse Odometry);

• Perception: a subset of ROS Perception (depthim-
age to laserscan, imu pipeline, laser filters, gmapping);

• LIDAR: rplidar, urg node, loam velodyne.
2) Results: For each formula and each file, Pangolin yields

true if the formula holds on the file and false otherwise with
the current value of quantified variables. To reach the end-goal
of code quality improvement, when a formula is false, the user
needs to review the code as there are two cases:
• a legitimate code turns out to be a counter-example for

the formula. It may be because the formula was not well
designed (unforeseen cases, not the intended meaning) or
due to Pangolin’s limitations as detailed in section III;

• the code is truly suspicious.

Rule # files Min Max Total Nav. Percep. LIDAR
R1 20 1 50 179 10 5 5
R2 3 1 2 4 1 2 0
R3 3 1 2 4 1 2 0
R4a 0 0 0 0 0 0 0
R4b 6 1 2 9 5 0 1
R5 8 1 6 22 1 2 5

TABLE II
ROS QUALITY MEASURES

A summary of the results is shown table II. For each rule,
the number of files in which a counter-example was found in
shown in the first column. The next two columns represent the
minimal and maximal number of violations found in one of the
reported file. The total column is the total number of violations
in all reported files. The number of violations was iteratively
computed as Pangolin stops on the first counter-example it
finds. The other three columns show the distribution of the
files between the different groups (navigation, perception or
LIDAR).

The first three rules were generic rules and not focused
on ROS. Rule R1 deals with global variables and is one the
simplest property. Yet, Pangolin found 20 files in which there
is at least one user-provided non-constant global variable (that
number drops to 10 files if we exclude test files). In the 10
remaining files, the number of global variables varies from 1 to
50. Three files have more than 40 global variables and belong
to the same package: this indicates a serious design issue. This
is surprising as we expected the problem of global variables
to be well known and therefore their use to be limited or even
absent.

Rule R2 looks for local variables used at most once and
Pangolin found three files where a node handle had a scope
too wide. The first one is shown listing 1. Even if the code
works well, a better design would have been to make the node
handlers attribute of the class. Indeed, these variables can be
abused in a future development in order to quickly integrate
a functionality in the code at the expense of the quality of
the code. In the other two files, the node handler was created
in main, and never used afterward. Thus, they pose the exact
same issue.

Finally, rule R3 targets the use of general I/O instead of
dedicated ones. Pangolin found three files where std::cerr



or std::cout was used. Two of them were in files unrelated
to ROS (main file for the Google Test Framework and one in
gmapping). The last one used std::cout and std::cert
before running ros::init to print help for command line
options and report errors when parsing them. This is an exam-
ple where legitimate code turns out to be a counter-example
because of an unforeseen case. To take this into account, we
would have to change the rule (and its corresponding pattern)
to authorize the use of generic I/O in main until ros::init
is called.

The last three look for suspicious code with ROS specific
features. Even if Pangolin found no counter-examples of the
property R4a, this rule might be useful during the development
process to prevent bugs from copy and paste for instance.

The rule R4b is similar to rule R4a but deals with publishers
which are attributes of a class. Pangolin reported 6 files in
which it found a counterexample. All the publishers were
actually published but not the way it was specified in the
formula. These counter-examples are legitimate code that
could be eliminated by lifting Pangolin limitations (such as
interprocedural or multi-files analysis).

Finally, rule R5 looks for the use of free functions as
callbacks. With Pangolin, we found 8 files in which at least
one free function is used as a callback. Six files reported by
Pangolin for this rule partly overlap with those reported for
the use of global variables, suggesting a design issue. Among
these six, there are the three files concentrating more than 40
global variables each.

A total of 218 defects were found (including 11 false
positives), resulting in a false positive ratio of 5%. The details
for each defect (rule formulation, package, and file) can be
found in Pangolin’s repository.

V. THE ROSAPPLICATION DESIGN PATTERN

In the previous section, we showed how to find suspicious
code patterns within a code base with Pangolin. Yet, we can
still improve code quality with finer rules to: capitalize on the
ones that have proven effective; overcome the limitations of
the others. To be effective, these finer rules require enforcing
a specific design on the code of a package. The requirements
on the design take the form of a design pattern called ROSAp-
plication. Section V-A provides an informal overview of the
design pattern and then section V-B formalizes it with FO++.
Notice that in the design pattern overview, we emphasis the
subset of rules we will formalize in the article but the whole
design pattern is available in Pangolin’s repository. Finally, we
perform a quick review of the design pattern.

A. Design pattern overview

The ROSApplication design pattern constrains the use of
ROS C++ API. It is based on the rules R1, R5 of section
section IV and constrains the structure of the code to ensure
that finer rules work properly. It also aims for:
• splitting data exchange and processing in order to have

ROS agnostic algorithms;

• ensuring consistent behavior with respect to ROS commu-
nication (the mapping between publishers or subscribers
and topics does not change during an execution);

• being simple to use.

struct ROSApplication{
ROSApplication():rate(10){init();}
void run(){

while(ros::ok()){
ros::spinOnce();
computation();
rate.sleep();

}}
private:

void init(){
pub = nh.advertise<Msg>("pub_topic",10);
sub = nh.subscribe("sub_topic",10,

&ROSApplication::callback,this);
}
void callback(Msg const& m){/*... */ }
void computation(){

//...
Msg m;
pub.publish(m);

}
ros::NodeHandle nh ;
ros::Publisher pub ;
ros::Subscriber sub;
ros::Rate rate ;

};
int main(int argc, char *argv[]) {

ros::init(argc,argv);
ROSApplication app;
app.run();

}

Listing 2. Desired architecture

Listing 2 shows an instance of the design pat-
tern. It centralizes all ROS-related operations within the
ROSApplication class (node handles, publishers or sub-
scribes are forbidden in any other class or functions). Thus,
analyzing this class is enough to know publishers and sub-
scribers that are used.

To ensure a constant mapping between mapping between
topics and publishers/subscribers, they should be attribute of
the class. To centralize topics related operation, there is an
init method in which each publisher and subscriber is
affected. Also, all constructors should call init to ensure
the publishers/subscribers are always affected.

To achieve simplicity, global variables are forbidden and
callbacks are private functions. More importantly, it also
provides a run method which acts as an event loop. Thus,
main is simply reduced to the creation of a ROSAppliction
object with a call to run on it.

B. Formal description

For conciseness, we focus on the formalization of the rules
that deal with init. To ease understanding, the formula is
divided into several sub-formulas.

Looking for a class named ROSApplication is for-
mally expressed as ∃c isClass(c)∧name(c,ROSApplication).



Looking for a method named init is expressed as
∃i isMemFctOf(i , c)∧name(i , init). Ensuring that the init
method is call in all constructors is formally expressed as
∀d (isConstructorOf(d , c) ⇒ modelsCTL(d ,AFcall(i)))
where call(f) is an element of PREDCFG such as it will be
true on states where there is a call to f . Finally, making sure
that each publisher is affected once and only once in init is
expressed as:

∀p(isAttributeOf(p, c) ∧ hasType(p,Publisher)⇒ (2)
(∃n(isAttributeOf(n, c) ∧ hasType(n,NodeHandle)∧
modelsCTL(i , AF(aPub(p,n))∧

AG(aPub(p,n))⇒ AX AG¬aPub(p,n)))))

The existential quantification for the NodeHandle is done
after the universal one for publishers because different node
handles can refer to different namespaces and there is no
obligation to use the same node handle for all publishers
and subscribers. aPub(X ,n) is another element of PREDCFG
such as it will be true on states where there is a statement
X = n.advertise(...). The constraint that each ele-
ment is affected at least once is expressed by the first part
of the CTL formula AF . . . (it should happen at least once)
whereas the at most one constraint is dealt with by the second
part of the CTL formula AG . . . (once it has happened, it
should not happen again). The formal property for subscriber
attributes is similar.

C. Design pattern review

This design pattern is partially used in some of the packages
we analyzed: 11 of them centralize all ROS communication
within a single class. Yet, these classes are most of the
time mingled with the algorithms that operate on the data.
This design pattern was used to enhance ROS code qual-
ity in different packages. For instance, we re-implemented
imu bias remover.cpp from the package imu processors. This
new implementation maintains the original code behavior
while fixing the defects found using Pangolin (10 global
variables, 3 free functions used as callbacks). The new code
is available in Pangolin’s repository.

VI. CONCLUSION

This paper presents a framework for checking source code
compliance with an user-provided specification looking for
suspicious code patterns. The framework includes a new
logic called FO++ which is based on a parametrization of
first-order logic with temporal logics. This logic allows us
to conjointly specify some properties over the control flow
graph of one or several functions and over the surrounding
abstract syntax tree. Once instantiated for C++, it is used as a
specification formalism for Pangolin, a verification engine for
C++ based on Clang, and nuXmv.

To improve code quality on ROS packages, we showed how
five common suspicious patterns could be formalized with
FO++ and using Pangolin, we checked their absence in 25
ROS packages. We found several occurrences of these patterns

in the packages we analyzed, some of which are real design
issues. To overcome the limitations of some of the rules, we
need to constrain the design of the code and thus we propose
a design pattern that addresses all the issues listed before. We
show how Pangolin can be used to enforce it.

There are two main directions for improving Pangolin: user
interaction and expressive power. The first one would be to
provide an input language closer to actual code, and to improve
user feedback. The second one would be to add interprocedural
and multi-file analysis. This would require extending FO++’s
temporal logics to distinguish in which function a statement
occurs.
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